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ABSTRACT

Accurately determining stellar ages and masses is crucial to studying many astrophysical phenomena.

We often estimate these parameters by fitting observations to theoretical stellar evolutionary tracks.

This can be computationally expensive and unreliable. StelNet is a Hierarchical Bayesian model of

Deep Neural Networks that determines stellar mass and age given effective temperature and luminosity.

StelNet has been trained on synthetic stellar evolution models and it performs best within that domain.

Stellar evolution is a predictive theory but it is not perfect. Each implementation has its own systematic

errors. As such, we do not expect a model of StelNet trained on synthetic data to perform well on

real observations. In this work, we implement transfer learning with several catalogues of stars with

reliable characterizations to adapt StelNet for improved performance on real observations. We show

that transfer learning improves StelNet’s performance on both the catalogues from which we drew

training data as well as two catalogues outside of the training data. The resulting model is robust

against systematic errors and allows us to quickly, automatically, and accurately characterize stars

from large data sets. This will prove timely for the next generation of observatories and provide a new

data set of stellar age and mass estimates for future studies.
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1. INTRODUCTION

Accurate stellar age and mass estimates offer a win-

dow into a wide range of astrophysical problems. This
includes the evolution of the stars themselves, the plan-

etary systems that surround them, and the galaxy as

a whole. For example, “ground truth” age and mass

estimates for stars can help constrain models of main

sequence spin down (e.g., McQuillan et al. 2014). Ad-

ditionally, the age of a star can be used to determine

irradiation and space weather conditions around it, per-

mitting an assessment of the stability of the atmospheres

of orbiting planets (e.g., Garraffo et al. 2022). Further

still, analysis of large samples of stellar ages also allow

us to study Galactic evolution over cosmic time (e.g.,

Bovy et al. 2019).
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Given initial mass and metallicity, stellar evolution

models predict the radius, luminosity, and effective tem-

perature of a star as a function of its age (e.g., Choi et al.

2016; Bressan et al. 2012). If the distance to a star is
known, effective temperature and luminosity can be de-

rived from standard photometry, after which mass and

age can be estimated by fitting observed temperatures

and luminosities to the predictions of a theoretical evolu-

tionary track or isochrone (e.g., Jørgensen & Lindegren

2005; Jurić et al. 2008; Breddels et al. 2010; Burnett &

Binney 2010; Binney et al. 2014; Angus et al. 2019).

However, this method of age and mass determina-

tion can be computationally expensive and at times

unreliable. In some regions of the H-R diagram (i.e.,

temperature-luminosity space), different stellar evolu-

tionary tracks cross each other, meaning that a single

instance of temperature and luminosity may correspond

to multiple ages or masses (Sahlholdt et al. 2019). This

results in variable precision of model-based age and mass

predictions depending on location within the H-R Di-
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agram. Moreover, due to differences in evolutionary

timescales for stars of different masses and the stellar

initial mass function, certain combinations of tempera-

ture and luminosity are more commonly observed than

others. Age estimates based on a best-fitting model do

not account for this, introducing a bias toward older de-

rived ages (Pont & Eyer 2004). On top of the difficulties

with model accuracy and precision, interpolation within

model stellar evolutionary tracks or isochrones is compu-

tationally expensive and impractical for large data sets.

This is especially true when we implement probabilistic

methods to estimate the model’s uncertainty.

As an alternative to traditional model fitting methods,

Garraffo et al. (2021) introduced StelNet, a Hierarchi-

cal Bayesian model of Deep Neural Networks to estimate

the masses and ages of solar-metallicity stars given their

luminosities and effective temperatures. Degeneracies

in stellar evolutionary tracks arise primarily between

times before and after reaching zero-age main sequence

(ZAMS). StelNet combats this by hierarchically combin-

ing estimates from both pre- and post-ZAMS models,

assigning a probability to each possible output based on

the initial mass function and the time a star of the pre-

dicted mass spends before and after ZAMS (see Section

3.2 of Garraffo et al. 2021 for further detail). StelNet

also quantifies the uncertainty in its outputs. By passing

inputs through multiple pre- and post-ZAMS models,

each trained on bootstraps of the original training data

set, it can output the posterior probability distribution

of age and mass estimates from each of the bootstrapped

models. Once trained, StelNet is computationally effi-

cient in performing inferences for large data sets.

StelNet is trained on solar metallicity evolutionary

tracks from the Modules for Experiments in Stellar

Astrophysics (MESA) Isochrones and Stellar Tracks

(MIST; Choi et al. 2016; Dotter 2016). While it per-

forms in this regime, StelNet is not expected to predict

age and mass based on real photometry as accurately as

it does for MIST data. First, stellar evolution models are

imperfect, and each implementation, including MIST,

has its own systematic errors. In addition, real observa-

tions of stars include observational uncertainties, which

synthetic training data do not possess. This means that

the fitted stellar parameters for an observed star are ex-

pected to be offset from those predicted by MIST-based

models.

To mitigate this issue, Garraffo et al. (2021) suggest

implementing transfer learning with well-characterized

stars to calibrate StelNet for optimal performance on

real data. Transfer learning involves re-training an

already-trained model on a smaller data set and for

a smaller number of iterations compared to the origi-

nal training process. Doing so takes advantage of the

knowledge gained from training with the original data

set and adjusts the model for performance on a similar

but distinct data set by fine-tuning its weights and bi-

ases. Garraffo et al. (2021) applied transfer learning to

StelNet, re-training it with data from David & Hillen-

brand (2015) (hereafter D&H), whose catalogue contains

measurements of the physical parameters Teff , mass, and

age for early-type (BAF) stars (all within 0.5 dex of so-

lar metallicity). The re-trained model performed more

accurately than the baseline on stars in the D&H cat-

alogue. Nonetheless, while D&H determine ages and

masses using a reliable probabilistic model fitting ap-

proach, they use a different set of isochrones from MIST,

introducing a systematic that will weaken this model’s

performance on other datasets.

In this work, we further calibrate StelNet using trans-

fer learning with the following data sets of both pre- and

post-ZAMS stars in addition to the sample from D&H:

• A subsample of near-solar metallicity post-ZAMS

stars in theGaia FGK benchmark sample from the

European Southern Observatory (ESO; Blanco-

Cuaresma et al. 2014). These stars have temper-

ature and luminosity determined through largely

model-independent means, as well as readily avail-

able age and mass estimates.

• A sample of subgiants from Godoy-Rivera et al.

(2021). The authors of this work demonstrate that

where a precise luminosity can be determined, sub-

giants are ideal targets for precise age and mass

estimates from isochrone fitting due to their rapid

evolution at almost constant luminosity.

• The catalogue of pre-ZAMS Orion Nebula Clus-

ter (ONC) stars from Hillenbrand (1997), which

includes an individual age estimate for each star,

rather than a single cluster age.

• The catalogue of pre-ZAMS stars in the NGC 6530

cluster from Henderson & Stassun (2012). Like the

ONC catalogue, this one also includes an individ-

ual age estimate for each star.

Our approach avoids overfitting to a particular system-

atic of any one stellar evolution model by including cat-

alogues with ages and masses determined by fitting to

multiple sets of isochrones (see Section 2 for further de-

tail).

We provide additional details of the data used for

transfer learning in Section 2 and comment on trans-

fer learning procedures in Section 3. We evaluate the

resulting models in Section 4 and discuss conclusions

and future directions in Section 5.
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2. DATA

In order to train StelNet with non-synthetic data, we

require a sample of stars with well-determined effective

temperature (Teff), luminosity, age, and mass. Because

the baseline StelNet models are trained on solar metal-

licity MIST evolutionary tracks, we constrain any ad-

ditional data to be within 0.5 dex of solar metallicity,

consistent with previous training using the D&H cata-

logue in Garraffo et al. (2021).

The locations of each new training set on the H-R

Diagram are shown in Figure 1. Regions populated with

training data are where we expect to improve StelNet’s

performance through transfer learning. The goal is to

adjust performance in these regions while leaving the

model’s performance in other regions unchanged.
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Figure 1. Distributions in Teff and luminosity of the three
post-ZAMS (including the D&H catalogue) and the two pre-
ZAMS data sets to be used for transfer learning in the present
work. Populated regions are where we expect to make the
biggest improvements to StelNet’s performance on actual
data, while leaving performance in other regions as they are.

The ages and masses of our training samples are de-

termined through fitting a range of different stellar evo-

lutionary models (see Sections 2.1 and 2.2 for further

details). We expect systematic biases to be introduced

due to the difference in isochrone choice for each sam-

ple, but our goal in this work is to create a model that is

robust against systematic errors and biases. Ultimately,

we expect to compromise precision with the goal of a

more general model that avoids overfitting to any par-

ticular systematic.

2.1. Post-ZAMS training sets

First, we use the assembled catalogue from Garraffo

et al. (2021) of D&H BAF type stars, which include the

age, mass, and Teff estimates from D&H, and luminosity

from the TESS input catalogue (Stassun et al. 2019).

The authors performed Bayesian analysis with solar-

metallicity PARSEC isochrones (Bressan et al. 2012) to

determine ages and masses for this sample, and all stars

in it have |[Fe/H]| < 0.5. The full catalogue has 1869

stars with estimates for all of our required parameters.

Second, we use the Gaia FGK benchmark stars from

the ESO (Blanco-Cuaresma et al. 2014). Out of the 34

stars in this catalogue, 20 have |[Fe/H]| < 0.5 based

on metallicity estimates from Jofré et al. (2014). We

use Teff , luminosity, and mass estimates from Heiter

et al. (2015). These come from averaging estimates from

Padova (Bertelli et al. 2008, 2009) and Yonsai-Yale (Yi

et al. 2003; Demarque et al. 2004) isochrones. For age es-

timates, we employ the results of Sahlholdt et al. (2019),

who determine upper and lower limits (all of which have

ranges within 3 Gyr) for 16 of the ESO benchmark stars,

12 of which have |[Fe/H]| < 0.5. In accordance with the

authors’ recommendation, we adopt the median of the

reported age range as a single age value for each of these

stars, with the range given as the uncertainty. We in-

clude the Sun in this sample, resulting in a catalogue of

13 stars with estimates for all of our required parame-

ters.

Third, we use the catalogue of subgiants from Godoy-

Rivera et al. (2021). Though this catalogue does not

include [Fe/H], we expect the mean of their distribution

in [Fe/H] to be between −0.5 and 0.5, given that their

distances are all < 1 kpc. Godoy-Rivera et al. (2021)

obtained parameters for these stars through SED fitting

and MIST-based modeling software. While this sam-
ple occupies a limited regime of the post-ZAMS H-R

diagram, its estimated ages are determined with unique

precision due to the rapid evolution of subgiants at near-

constant luminosity. In total this catalogue has 340 stars

with estimates for all of our required parameters.

2.2. Pre-ZAMS training sets

Our data for training pre-ZAMS models consists fully

of open clusters within 0.5 dex of solar metallicity.

We use the catalogue of Orion Nebula Cluster (ONC)

stars from Hillenbrand (1997), who determine ages and

masses by fitting to isochrones from D’Antona & Mazz-

itelli (1994) and Swenson et al. (1994). This catalogue

has 551 stars with estimates of all our required parame-

ters. In addition, we use the catalogue of stars belonging

to NGC 6530 from Henderson & Stassun (2012), who list

masses and ages determined using isochrones from Siess



4 Anya Phillips et al.

et al. (2000). Henderson & Stassun (2012) list all of our

required parameters for 580 stars.

3. TRANSFER LEARNING

The baseline StelNet model consists of 20 “pre-

ZAMS” and 20 “post-ZAMS” neural networks, where

each of the neural networks are trained on a differ-

ent bootstrap (sample with replacement) of the MIST

training data. The pre- and post-ZAMS bootstraps

are selected from pre- and post-ZAMS portions of the

MIST evolutionary tracks, respectively. Passing in-

puts through multiple neural networks trained on boot-

strapped data results in a Bayesian model, where the

combined output of the networks is a posterior prob-

ability rather than a single estimate, quantifying the

uncertainty of the model (Gal & Ghahramani 2016).

In traditional machine learning approaches, it is as-

sumed that future data to be fed to a model belong

to the same data set as the training data. How-

ever, this assumption does not hold for baseline Stel-

Net models, which are trained on synthetic evolutionary

tracks but are meant to be used on actual observations.

Transfer learning leverages knowledge acquired from a

pre-existing machine learning model to enhance perfor-

mance on a new data set (see Pan & Yang 2010 for

a more complete review). Beginning the training pro-

cess from scratch with observations of well-characterized

stars would require enormous amounts of new training

data. Instead, transfer learning involves re-training the

baseline MIST models of StelNet with comparatively lit-

tle new data, effectively calibrating the baseline models

for better performance on actual observations by fine-

tuning the original model’s weights and biases.

In the original training process Garraffo et al. (2021)

began with a neural network with randomized weights

and biases. With transfer learning, we begin training by

loading a MIST-trained StelNet bootstrap network and

train it for relatively few iterations on the new observa-

tional data.

We implement transfer learning separately for Stel-

Net’s pre- and post-ZAMS models, so baseline pre-

ZAMS models are retrained only on pre-ZAMS data and

baseline post-ZAMS models are retrained only on post-

ZAMS data. We begin with a single network from the

baseline models and retrain it with 20 different boot-

straps of the new training data, resulting in 20 neural

networks each for pre- and post-ZAMS.

For the post-ZAMS training, we include data from the

FGK benchmarks, the D&H sample, and the Godoy-

Rivera et al. (2021) subgiants. Because the FGK bench-

mark stars have the most reliable parameter estimates,

we give them more weight in the training process by

making five copies of each star in the sample (yielding 65

stars), and randomly selecting roughly 50 for training.

While it is not common practice to use such a high frac-

tion of the available data for training, our aim is to prior-

itize the model’s performance on the FGK benchmarks,

testing the resulting models on other observations. We

also include roughly 30 randomly selected stars each

from D&H and from Godoy-Rivera et al. (2021).

For the pre-ZAMS training, we include roughly 30 ran-

domly selected stars each from the Hillenbrand (1997)

catalogue of ONC stars and the Henderson & Stassun

(2012) catalogue of stars in the NGC 6530 cluster.

For both the pre- and post-ZAMS models, we also in-

clude additional MIST data points from the pre- and

post-ZAMS portions of the evolutionary tracks, respec-

tively. The observations selected for transfer learning do

not uniformly populate the space of Teff , luminosity, age,

and mass, so by including MIST data points, we avoid

overfitting to observations and anchor the model to the

predictions of stellar evolution where we do not have

new training data. We randomly select 30 points from

the entire MIST data set to include in training and then

select additional MIST data outside the mass range of

the transfer learning data. We add 60 additional MIST

points (30 with masses lower than the lowest-mass new

data point and 30 with masses higher than the highest-

mass new data point). We train each pre- and post-

ZAMS bootstrap on the new training data set for 100

gradient descent steps.

4. MODEL EVALUATION

In this section, we compare the performance of the

baseline StelNet models and our pre- and post-ZAMS

models after transfer learning with the specifications de-

tailed in the previous section. In addition to visual com-

parison of the predicted and true parameters of each

data set (see Figures 2 and 3), we can quantitatively

validate our models through two methods.

First, we combine all of the data from which each

training sample was selected and compute the Pearson

correlation coefficient between the StelNet predicted pa-

rameters and their true values. The Pearson coefficient

offers a metric of how well two parameters fit some lin-

ear relationship. While it does not test for whether the

two parameters follow the one-to-one correspondence we

strive for in this work, we use it in tandem with visual

inspection to get a sense of the effects of transfer learn-

ing (see the discussion of Figures 2 and 3).

Additionally, we follow the prescription in Verde et al.

(2013), who employ the tension parameter, τ , to eval-

uate the consistency between two distributions in a

Bayesian approach. We can calculate the tension be-
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Figure 2. StelNet predictions for age (left panels) and mass (right panels) versus the reported value for the post-ZAMS
training datasets, which include the D&H sample, the Godoy-Rivera et al. (2021) subgiants, and the FGK benchmark stars.
The predictions in the top panels were made with the baseline StelNet models and the predictions in the bottom panels were
made with StelNet after transfer learning with the post-ZAMS training sets. The Pearson coefficient for the predictions and
true values of the combined data sets is displayed in the lower right of each panel. The bottom panels show the residuals.

tween two distributions, Ppred, the posterior predicted

by StelNet with mean µp and standard deviation σp,

and Ptrue, a Gaussian whose mean µt is the observed

value of a stellar parameter and whose standard devia-

tion σt is it’s reported error. Given these two Gaussian

distributions, we can calculate the Bayesian evidence,

E, or the area of overlap between the two distributions,

as described in Garraffo et al. (2021):

E =
1√
2π

1√
σ2
p − σ2

t

exp

[
−1

2

(µp − µt)
2

σ2
p − σ2

t

]
. (1)

We then compute the normalized tension:

τ =
Ē|maxA=maxB

E
, (2)
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Figure 3. StelNet predictions for age (left panel) and mass (right panel) versus the reported value for the pre-ZAMS training
sets, which include the ONC data from Hillenbrand (1997) and the the NGC 6530 data from Henderson & Stassun (2012). The
Pearson coefficient for the predictions and true values of the combined data sets is displayed in the lower right of each panel.
The predictions in the top panels were made with the baseline StelNet models and the predictions in the bottom panels were
made with StelNet after transfer learning with the pre-ZAMS training sets. The bottom panels show the residuals.

where Ē|maxA=maxB is the area of overlap between the

two distributions if the difference in their means is set

to zero (µp = µt). Thus, as the two distributions be-

come less similar, the tension τ between them increases.

We interpret the tension using the Jeffreys scale (Jef-

freys 1973), which asserts that log τ < 1 means that the

difference between the two distributions is not signifi-

cant, so we consider our predictions consistent with the

ground truth only if log τ < 1.

As a minor caveat, while StelNet outputs a Gaussian

mean and standard deviation to characterize its error as

a model, the errors reported for stellar age and mass are

generally asymmetric and non-Gaussian (in particular,

this is the case for the data from D&H and Godoy-Rivera
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Table 1. Fractions of the FGK benchmark sample, the D&H
sample, and the Godoy-Rivera et al. (2021) (G-R) subgiant
sample that have log τ < 1. The top entries use the ten-
sion τ between the reported distribution and the baseline
StelNet estimate while the bottom entries use the tension
between the reported distribution and the StelNet estimate
after transfer learning. We include tensions in both age and
mass distributions. We consider StelNet’s predictions to be
consistent with the ground truth when log τ < 1, so the frac-
tions displayed in this table are the fractions of the sample
with accurate StelNet characterizations.

Sample Fraction with log τ < 1

Baseline Model Age Mass

FGK Benchmarks 0.667 0.333

D&H 0.592 0.689

G-R Subgiants 0.856 1.000

After Transfer Learning Age Mass

FGK Benchmarks 0.917 0.583

D&H 0.793 0.750

G-R Subgiants 0.938 1.000

et al. 2021). In order to calculate a tension for such ob-

served distributions, we conservatively use the narrower

side of each error as σt, which minimizes the width of the

assumed Gaussian. As a result, the tensions we compute

can be considered upper limits, since we take the error

that assumes the two distributions are as dissimilar as

possible.

4.1. Performance on Training Data Sets

Figure 2 compares the StelNet prediction to the re-

ported value for the data in each of the catalogues from

which we drew post-ZAMS training data for both the

baseline StelNet model and the model after transfer

learning. It also includes the Pearson correlation co-

efficient between the predicted and true values of all of
the data sets combined for mass and age in each model.

The transfer learning age estimates improve signifi-

cantly with the Pearson coefficient increasing from 0.694

to 0.824. Notably, the model after transfer learning per-

forms accurately on all of the FGK benchmark stars.

The visual improvement between masses estimated with

the baseline model and the model after transfer learning

is less obvious, particularly for the D&H data, but the

Pearson coefficient increases from 0.681 to 0.714.

We compute the tension of each prediction with the

reported values in age and mass for the three catalogues

used in post-ZAMS transfer learning. The fraction of

each sample that have log τ < 1 are displayed in Table

1. We see that all of the fractions improve from the

baseline to the transfer learning model.

Figure 3 compares the predictions from StelNet to

the reported values for all of the data in both cata-

logues from which we drew pre-ZAMS training data for

the baseline StelNet model and the model after trans-

fer learning. Each panel includes the Pearson coeffi-

cients between ground truth and predicted values for

both models. For the age estimates, we see that while

the baseline model yields a relatively high Pearson coeffi-

cient of 0.945, it systematically underestimates the ages

of younger stars. This effect is corrected after trans-

fer learning, where the Pearson coefficient is raised to

0.973. For the masses, we decrease the residuals and

increase the overall Pearson coefficient from 0.962 to

0.983 through transfer learning. Unfortunately, the Hil-

lenbrand (1997) and Henderson & Stassun (2012) cat-

alogues for the ONC and NGC 6530 do not report the

uncertainty in their age and mass estimates, so we are

unable to compute tensions between the true and pre-

dicted distributions as we did with the post-ZAMS data

sets.

4.2. Performance on Single-Age Open Clusters

We showed in the previous section that transfer learn-

ing improves StelNet’s performance for stars in the cat-

alogues that include its new training data. However, our

goal in transfer learning is to create a model that per-

forms well on observations outside these catalogues as

well. For additional test data we use the catalogue from

Wright et al. (2011), which includes the temperatures,

luminosities, and masses of stars belonging to several

open clusters, including Praesepe and NGC 2547. We

choose these two clusters for testing because all of the

stars within each are in the same evolutionary stage.

Figure 4 shows these clusters’ ages versus the mass of

each member. The figure also displays the ZAMS age as

a function of mass. This boundary is given by setting

the equivalent evolutionary point (EEP) parameter in

the MIST tables to 202 (see Garraffo et al. 2021). We

see that Praesepe consists only of post-ZAMS stars and

NGC 2547 consists only of pre-ZAMS stars. Other clus-

ters in the Wright et al. (2011) catalogue either have

fewer stars or are of intermediate ages such that their

lower-mass members are pre-ZAMS and their higher-

mass members are post-ZAMS.

The authors determine stellar masses in this catalogue

by fitting to isochrones from Siess et al. (2000). Prae-

sepe and NGC 2547 also have cluster ages determined

in Bossini et al. (2019) using Bayesian fitting methods

to PARSEC isochrones, so while we do not have individ-

ual age estimates for each star, we can compare the age

output of StelNet for a star in either of these clusters to

the cluster age reported in this catalogue.

In the left panel of Figure 5, we show the distri-

bution in predicted ages for Praesepe members from
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Figure 4. Distribution in log (age/yr) and log (M/M⊙) for
Praesepe (blue) and NGC 2547 (orange). A red line indicates
the ZAMS age as a function of initial mass, showing that
Praesepe consists fully of post-ZAMS stars and NGC 2547
consists fully of pre-ZAMS stars.

StelNet compared to the Praesepe age estimate from

Bossini et al. (2019) (log (age/yr) = 8.875, with a

lower limit of 8.871 and an upper limit of 8.877). The

right panel of Figure 5 compares the StelNet predicted

masses for Praesepe members to their true values re-

ported in Wright et al. (2011). Both the baseline StelNet

model and the model after post-ZAMS transfer learn-

ing yield overestimates of stellar age, though the model

after transfer learning shifts slightly toward younger

ages. Both models perform reasonably well for stellar

mass estimates, though the model after transfer learn-

ing tends to slightly overestimate the masses of stars

with true mass log (M/M⊙) ≲ −0.3. We note our post-

ZAMS training sample contained very few real stars with

M ≲ 1M⊙. We aimed to anchor the model to MIST

predictions at low masses by including extra low-mass

MIST data points but MIST predictions are clearly bi-

ased toward higher ages as evidenced by the baseline

model’s performance in the left panel.

Figure 6 similarly compares StelNet’s age and mass

predictions for NGC 2547 to their reported values in

Bossini et al. (2019) and Wright et al. (2011). In this

pre-ZAMS case, transfer learning widens the distribu-

tion in age estimates but counteracts the systematic

age overestimation seen in the predictions of the base-

line models. Both the baseline model and the model

after pre-ZAMS transfer learning perform reasonably

well for stellar mass estimates, though the model af-

ter transfer learning seems to perform better than the

baseline at low masses (log (M/M⊙) ≲ −0.2). Our pre-

ZAMS training data tended to have lower masses (see

the lower right panel of Figure 3), a bias introduced by

the fact that lower mass stars spend more time on the

pre-main sequence, so it is again unsurprising that our

pre-ZAMS transfer learning improves StelNet’s perfor-

mance on low-mass stars.

Bossini et al. (2019) report an age for NGC 2547 of

log (age/yr) = 7.432 with a lower limit of 7.414 and

an upper limit of 7.449, and the distribution in pre-

dicted ages for the StelNet model after pre-ZAMS trans-

fer learning is considerably wider than this range. How-

ever, in Figure 7 we show the distributions of individual

literature ages for ONC and NGC 6530 that we used for

transfer learning, both of which have considerably more

spread than the range reported by Bossini et al. (2019)

for NGC 2547. It is not unreasonable for StelNet to have

estimated a wider range of ages than the margin of error

in NGC 2547’s age from Bossini et al. (2019).

5. CONCLUSIONS

We have separately implemented transfer learning to

calibrate the pre- and post-ZAMS components of Stel-

Net for improved performance on real data. We sum-

marize our results below:

• The transfer learning models result in better cor-

relations between predicted stellar parameters and

their true values for the catalogues from which the

training data were drawn.

• Fewer stars in the catalogues from which the post-

ZAMS training data were selected have true distri-

butions in high tension with their StelNet predic-

tions in the transfer learning models than in the

baseline StelNet models.

• We highlight that StelNet’s performance on low-

mass (< 1M⊙) post-ZAMS stars still needs further

improvement, as evidenced by its performance on

members of the Praesepe cluster. Our post-ZAMS

training sample consisted overwhelmingly of stars

with M > 1M⊙, so additional genuine low-mass

training data (as opposed to simply augmenting

the MIST data in thie regime) is required to re-

solve this issue.

• Transfer learning with ONC and NGC 6530 mod-

estly improves StelNet’s performance on low-mass

pre-ZAMS stars. Our new model estimates a dis-

tribution of stellar ages in NGC 2547 more con-

sistent with the literature age of the cluster than
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Figure 5. (Left panel) Distribution in StelNet age predictions for Praesepe members from the baseline model (blue) and the
model after transfer learning (orange). A vertical red line indicates the age of the cluster as reported in Bossini et al. (2019).
(Right panel) Comparison of StelNet predictions and true values of Praesepe members for the baseline model (blue) and the
model after transfer learning (orange). Both models overestimate stellar age, though the model after transfer learning shifts to
younger estimates. The model after transfer learning systematically overestimates the masses of stars with log (M/M⊙) ≲ −0.1,
likely due to the lack of higher-mass post-ZAMS training data.

the baseline StelNet model. While our pre-ZAMS

training set did not consist of more massive stars

(log (M/M⊙) ≳ 0.2), the amount of time a star

spends on the pre-main sequence decreases with

its initial mass, so the likelihood of observing a

high-mass pre-ZAMS star is relatively low (a fact

taken into account when StelNet’s full hierarchical

model is run).

There is a massive scope for expanding and continuing

to improve StelNet going forward, both in our training

sample, and in the architecture of the model itself.

In this work, we implemented training with age and

mass estimates from many different stellar evolution

models, all of which have their own systematics. Fu-

ture transfer learning might employ homogeneous train-

ing sample, with ages and masses all estimated using the

same model (ideally, MIST). This would yield a precise

model up to a single systematic, rather than one that is

robust against systematics at the cost of its precision.

Alternatively, StelNet could benefit from a training

sample with age and mass estimates from different meth-

ods customized to the variety of the star in question. For

example, asteroseismology is considered a highly reliable

method of age determination for red giant stars but is

not a feasible technique for main-sequence stars, whose

oscillations are impossible to detect at standard obser-

vational cadences. On the other hand, gyrochronology

models are precisely calibrated to main sequence stars

(particularly in open clusters), but are not a viable age

determinant in giant stars, which lack consistent age-

rotation relationships. Lithium depletion has a well-

understood relationship with stellar age but only for pre-

ZAMS stars, before primordial lithium has been com-

pletely depleted. Lastly, abundances of radioactive iso-

topes provide accurate age estimates, but such measure-

ments require extremely high-resolution spectroscopy.

This data is available for very few stars. Ultimately, such

a training sample may be inhomogeneous but could re-

sult in a StelNet model that is more accurate and avoids

the systematic limitations of training with age and mass

estimates from model fitting.

Apart from its training sample, there are multiple av-

enues of improvement to the architecture of StelNet it-

self. First, while StelNet provides an estimate of its

epistemic uncertainty by bootstrapping multiple trained

models (see Section 3.4 of Garraffo et al. 2021 for de-

tails), it does not currently take into account uncertainty

in the initial inputs. Going forward, we hope to modify
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Figure 6. (Left panel) Distribution in StelNet age predictions for NGC 2547 members from the baseline model (blue) and the
model after transfer learning (orange). A vertical red line indicates the age of the cluster as reported in Bossini et al. (2019).
(Right panel) Comparison of StelNet predictions and true values of NGC 2547 members for the baseline model (blue) and the
model after transfer learning (orange). Transfer learning counteracts the systematic overestimates of stellar age seen in the
baseline. Both models yield reasonably good mass estimates, though the model after transfer learning seems to perform better
than the baseline at low masses.

StelNet to sample posterior distributions in Teff and lu-

minosity, pass each sample through the existing model,

and return the resulting distribution in mean StelNet

estimates. This would allow us to propagate observa-

tional uncertainty through StelNet, yielding more real-

istic uncertainties in mass and age. Modifying StelNet

to take distributions as inputs would allow us to use it

in conjunction with models that output posteriors, such

as ThePayne (Ting et al. 2019).

The ability to perform age and mass estimates directly

from photometry (rather than from the derived Teff and

luminosity) would make StelNet a more useful tool to

the astronomical community at large. MIST supplies

synthetic evolutionary tracks in the Gaia photometric

bands. We plan to use these to train new StelNet models

before implementing transfer learning with stars where

Gaia photometry and reliable age and mass estimates

are available.

Another clear next step is to add metallicity as an out-

put dimension to StelNet. Including isochrones of differ-

ent metallicities in StelNet’s training will introduce more

degeneracies into the input space. We can circumvent

this with the same hierarchical strategy StelNet already

use between the pre- and post-ZAMS.

The SAO REU program is funded in part by the Na-

tional Science Foundation REU and Department of De-

fense ASSURE programs under NSF Grant no. AST-

2050813, and by the Smithsonian Institution.
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